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Abstract 

Contrary to other claims, we argue that, bulk viscosity associated with the inter- 

actions of nonrelativistic particles with relativistic particles around the time of the 

grand unified theory (GUT) phase transition cannot lead to inflation. Simply put, 

the key ingredient for inflation, negative pressure, cannot arise due to the bulk 

viscosity effects of a weakly-interacting mixture of relativistic and nonrelativistic 

particles. 
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Since the original proposal of Guth’ and the crucial modiCcations of Liider 

and Albrecht and SteinhardP various models have been suggested to implement 

slow-rollover inflation. Inflationary models based upon GUT symmetry breaking, 

SUSY symmetry breaking, induced gravity, R’ theories of gravity, compactification 

of extra dimensions, and ‘random’, weakly-coupled scalar field exist. Thii has led 

some to elevate inflation to an early Universe paradigm. [For a detailed and up to 

date review of in&ation we refer the reader to ref. 4.) 

Several authors have raised the possibility that bulk viscosity can also be the 

driving force of the accelerated expansion associated with inflation”-7 The proposal 

relies on the observation that the effect of bulk viscosity in an expanding Universe 

is to decrease the value of the pressure. Since inflation requires an equation of 

state where p = -p one can ask whether or not irreversible processes can be strong 

enough to drive the Universe into an inflationary stage. These authors”-’ have 

suggested that bulk viscosity arising around the time of a grand unified theory 

(GUT) phase transition can indeed lead to negative pressure, and thereby drive 

inflation. Their idea is that during and just after the GUT phase transition the 

Universe is comprised of a mixture of highly relativistic and nonrelativistic particles, 

with a mean interaction time of the order of the age of the Universe; as is well known 

such a mixture has a significant bulk viscosity. The nonrelativistic particles are 

the so-called leptoquark gauge bosons which acquire mass of order T. (the critical 

temperature = 10 I’ - 10r6GeV) during the phase transition. 

In this paper we shall show that such an inflationary model cannot work. In the 

case of weakly-interacting particles the associated bulk viscosity cannot make the 

pressure negative, excluding any form of inflation, whether exponential or general- 

ized (generalized inSation6 being a phase where p+3p < 0, so that i2 > 0, where R is 

the cosmic scale factor). The physical reason is very simple. For point-like, weakly 
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interacting particles9 bulk viscosity arises due to the incomplete equilibrium of the 

relativistic and nonrelativistic components. And due to the non-equilibrinm nature 

of the particle distributions the energy density of the system as a whole decreases 

more slowly than it would if equilibrium distributions were maintained. Hence, the 

effect of bulk viscosity can be and is described as a lowering of the pressure from 

its equilibrium value. (Recall d(pR3) = -pdR’. ) 

However, it is clear that the pressure can never become negative due to such 

effects. Recall the definition of pressure p for weakly interacting particles. In terms 

of the distribution function f 

p= k'fdn / (1) 

where k’ is the square of the one-particle three-momenta and dU is the invariant 

integration element, which for the Robertson-Walker line element has the form 

dll = d3k/[(2e)“Bj 

Here E is the one-particle energy. The positivity of p is manifest. (For a detailed 

discussion of bulk viscosity see ref. 10.) 

To make more definite the general statements discussed above we shall construct 

a simple model which incorporates all the essential physical features. To begin, let 

us review the basic equations governing the evolution of the early Universe. For 

simplicity we will assume that the space-time metric is that of a flat Robertson- 

Walker model (although in the real spirit of inflation we should work with a general 

inhomogeneous and anisotropic model): 

da3 = -df’ + R’(t)(dz’ + dy’ + dz?) (2) 

The matter content of the Universe will be an imperfect fluid, but for vanishing 

shear viscosity and no heat conduction the energy-stress tensor can be written in 
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the form of a perfect fluid with an effective pressure11*1z P 

T,w = (P + P)u,uv + Pg,w 

Here p is the energy density, up is the four-velocity of the matter (in the comoving 

frame it is 6:) and the effective pressure P is given by 

P = p - S(lk/R)< (4) 

with p the equilibrium pressure and f the coefficient of bulk viscosity. 

Einstein’s equations take the form: 

ZP z (iz/zq2 = 8np/(3m;J 

3/R = -4r(p + 3P)/(3m&) (6) 

Throughout units are chosen such that )r = E = ks = 1 and G;;“’ E mpr = 

1.22 x 1Or9 GeV is the Planck mass. 

The key condition for having inflation is that A be greater than or equal to zero: 

thii requires that for generalized or exponential inflation, 

~+3p<9H~ (‘1 

p+p=3H5 (8) 

respectively. 

Clearly one needs to be more specific about p,p and c to further discuss these 

conditions. The authors of ref. 6 solve for the coefficient of bulk viscosity to obtain 

constraints on c necessary for inflation to occur. We will examine a more or less 

realistic model to see if sufficient bulk viscosity can actually arise to drive inflation. 

Having these remarks in mind we set up the equations which govern the be- 

haviour of matter. Since we have a mixture of relativistic and nonrelativistic gas= 
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we write: 

P = NT’ f P&, T) 

P = NT’/3 + P&, T) 

N = “‘(cg, + (7/a) c g/)/30 

(9) 

where p,,, and pm are the energy density and pressure of the nonrelativistic compo- 

nent, n is the number density of nonrelativistic particles and gb, gf count the bmonic 

and fermionic degrees of freedom of the relativistic particles. These equations are 

written with the Eckart choice for the temperature10-12. The bulk viscosity in thii 

model arises due to the lack of equilibrium between the relativistic particles and 

the nonrelativistic particles. The viscosity coefficient can be calculated’* in terms 

of n,T 

q = 4NT’(1/3 - (L$/+),)*r (10) 

where r is the mean time for relativistic particles to scatter off nonrelativistic par- 

ticles, estimated as 

r Tr l/(nu) 01) 

where o is the cross section for scattering of the relativistic particles on the nonrel- 

ativistic particles. Thii expression is valid for Hr < 1, the collisional limit’* (i.e., 

many collisions per expansion time). 

In the collisionless lit (i.e., Hz B l), Eqn(l0) must be modified. Since the 

probability for a collision in a Hubble time (s H-l) is (Hr)-r, the bulk viscosity 

must scale as H-l(Hs)-‘. Thus the general form of the bulk viscosity coefficient < 

should be of the form 

S = 4NT’W - (&+%)n)‘Pr/(~ + (Hv)*) 02) 

4 



where i3 is a numerical constant expected to be of order unity. Note that the 

viscosity vanishes both in the collisional limit (Hr + 0) and in the colliiionkss 

limit (Hr + oz.), aa it must, and achieves its maximum value for Hr - 0 (1). (This 

same form for the shear viscosity as a function of Hr has been rigorously derived 

in ref. 13.) 

For a dynamical description we need also an evolution equation for n: in the 

Robertson-Walker metric it has the form 

ti+3Hn= Q (13) 

where Q is the net soume term for creation of the nonrelativistic particles and the 

3Hn term M usual accounts for the dilution of particles due to the expansion of the 

Universe. 

Given P,,., pm, o and Q we have a closed system of equations for H,T and n. 

The quantities < and r can be calculated from Eqns(lO,ll). As usual, we can avoid 

the second-order equation for R, Eqn(G), by employing the energy-conservation 

equation: 

j+3H(p+P) =0 (14) 

From thermodynamic considerations we can calculate pm and pm. For a gas of 

nonrelativistic particles’o 

p,,, = tam + 3nT/2 WI 

p,,,=nT WI 

where m is the mass of the nonrelativistic particles. The scattering cross-section is 

taken to have the form 

0 N a’/(m’ f T*) (17) 

where a is the unified coupling strength (of order l/40 or so). This form has the 

expected behaviour in the T >> m and T << m hits. 
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Introducing the entropy per nonrelativistic particle 8 

a = 4NTS/(3n) 

the expression for the viscosity coefficient can be simplified: 

< = 4NT’flr/9[(2s + l)‘(p + (Hr)‘)] 

w4 

091 

Then condition (8) for inilation becomes: 

(2s + l)‘(s + S/2 + m/T)/e = pHr/(p + (Hr)‘) (20) 

We can ask what value of p is required to satisfy this condition. It is straight- 

forward to show that /3 is bounded from below by /3(s,Hr) 2 2.2 x 10s: if instead 

we use condition (7) for generalized inflation, the bound becomes slightly weaker 

fl(s,Hr) 2 760. In any caSe these are highly unreasonable values, since we would 

expect p = O(1). 

Note that for reasonable values of p (i.e., of order unity) negative pressure is 

not attained because the viscosity does not continue to increaze linearly with the 

scattering time r: ln the collisionless regime (Hr 1 1) the viscosity must and does 

decrease because the two components cue not interacting. We could stop here say- 

ing that in the best case we need an extremely large value for p (which is physically 

unreasonable) to reach an inflationary stage. However, to make the analysis com- 

plete - although purely academic - we shall assume that for some unknown reason 

the viscosity can be enhanced and ask if an inflationary stage can be achieved. 

It is easy to see that if the number of nonrelativistic particles is conserved the 

system escapes very rapidly from the accelerated expansion. If %P = 0, then it 

follows from Eqn(l3) that n 0: Rb3 (just the conservation of the total number of 

massive particles). From this we see that r u l/(on) must increase as R3, and so 
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Eqn(12) implies that f must eventually decrease as Rm3 - thereby shutting off any 

negative pressure (should it have developed). 

Now consider the effect of particle creation: relativistic particle + relativistic 

particle+2 massive bosons. The rate for this process is @ a r&u, i.e., 

Q et a’NiT6exp(-2m/T)/(T* +m*) 

where the exp(-am/T) factor takes into account the Boltzmann suppression for cre- 

ating particles with m > T. Here n,d = N.T3 is the number density of relativistic 

particles and N. is given by 

N. = C(3)(c 9b + (3/4) c g/)/X* (21) 

(Here ~(3) N 1.202 denotes the Riemann c function) 

Note that the timescale for the interaction between relativistic and nonrelativis- 

tic particles must also set the timescale for massive particle creation, which is what 

we have assumed. We have ignored massive particle annihilations in our model; 

however they would only decrease the number of massive particles (and the bulk 

viscosity). To perform the numerical analysis we introduce dimensionless variables: 

x = &&+mlmt 

z=T/m (22) 

y = njm3 

remembering that the only dimensional parameter available is the msas of the non- 

relativistic species. 

We characterize the enhancement of viscosity by multiplying the expression for 

$, Eqn(12) or (19), with a factor A and taking /3 equal to unity. Before discussing 
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the results of our numerical calculations we note that the parameters N, N., m and 

Q do not appear independently in the equations: N. can be written as 

N.=IN (23) 

where 7 is between 0.32 and 0.37 depending on the ratio (Cgb)/(Cg,), while m,a 

occur only in the combination 

X = fi(m/mpl)/a2 

Physically, X - (H r ) 1 = r n measures whether or not colliiions between the two 

components are occurring rapidly. For m sz 0 (10” - 10” GeV), X is of order unity. 

As discussed earlier, the bulk viscosity coefficient c achieves its maximum value for 

(Hr) - 1, or X - O(1). 

We have looked for stationary solutions of our system (H = con&., T = const., 

n = con&, etc.), i.e., for inflating models. For a given assumed steady state tem- 

perature, we have numerically solved for the relationship between X and A (using 

N = 50 and 7 = 0.37). The results are shown in Fig.1. In order to achieve an 

infIationary state with T 5 m, the bulk viscosity enhancement parameter A must 

be in excess of 10s, irrespective of the value of X-which confirms our expectation 

that to achieve an inflationary stage one would need a much larger viscosity than 

can be produced by physical processes. 

We conclude that the bulk viscosity which arises due to the ‘weak’ (i.e., per- 

turbative) interactions between a nonrelativistic and a very relativistic component 

cannot drive inflation. Firstly the bulk viscosity which arises cannot on physical 

grounds drive the pressure negative. Rather, the nonequlibrium effects associated 

with bulk viscosity merely cause the energy density to dccreoae less rapidly than 

in the equilibrium case, which is equivalent to a deerease in pressure (relative to 



the equilibrium case). By using a formula for bulk viscosity which is only valid in 

the collisional lit previous authors were misled into believing that bulk viscosity 

could drive the pressure negative. Secondly, should ‘non-perturbative’ interactions 

enhance the bulk viscosity due to the loose coupling between particles, the dilution 

of the massive particle component, except under the most extreme of assumptions 

for the bulk viscosity coefficient, drive the bulk viscosity rapidly to zero. Finally, we 

note that in order to reasonably expect negative pressure we must appeal to ‘non- 

perturbative’ effects, which of course is the source of negative pressure in the usual 

inflationary scenario. Purely perturbative effects do not lead to negative pressure. 
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Figure Caption 

Figure 1. - The value of the viscosity enhancement A require to achieve a steady 

inflationary state with temperature T = zctn as a function of X. Note, the curves 

for z 5 0.5 lie above those displayed. The requisite value of A is minimized for 

x - O(1); Thii is what one would expect, as for X >> 1 or X << 1 the viscosity 

coefficient < -+ 0. 
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